

Heidi Poxon
Cray Inc.

Topics

NCSA Workshop, February 2013 Cray Inc.
2

● CrayPat-lite

● Reveal

NCSA Workshop, February 2013
3

Cray Inc.

CrayPat-lite Goals

NCSA Workshop, February 2013 Cray Inc.
4

● Provide automatic application performance statistics at
the end of a job
●  Focus is to offer a simplified interface to basic application performance

information for users not familiar with the Cray performance tools and
perhaps new to application performance analysis

●  Gives sites the option to enable/disable application performance data
collection for all users for a period of time

● Keep traditional or “classic” perftools working the same
as before

● Provide a simple way to transition from perftools-lite to
perftools to encourage further tool use for performance
analysis

Steps to Using CrayPat “classic”

NCSA Workshop, February 2013 Cray Inc.
5

Access performance tools software

Build program, retaining .o files

Instrument binary

Modify batch script and run program

Process raw performance data and create report

a.out

a.out+pat

a.out+pat*.xf

> make

a.out+pat*.ap2
Text report to stdout

a.out+pat*.apa
MPICH_RANK_XXX

> pat_build –O apa a.out

aprun a.out+pat

> pat_report a.out+pat*.xf

> module load perftools

Steps to Using CrayPat-lite

NCSA Workshop, February 2013 Cray Inc.
6

Access light version of performance tools software

Build program

Run program (no modification to batch script)

a.out (instrumented program)

Condensed report to stdout
a.out*.rpt (same as stdout)

a.out*.ap2
MPICH_RANK_XXX files

> make

aprun a.out

> module load perftools-lite

Benefits of CrayPat-lite

NCSA Workshop, February 2013 Cray Inc.
7

● Program is automatically relinked to add instrumentation
in a.out (pat_build step done for the user)

●  .o files are automatically preserved

● No modifications are needed to a batch script to run

instrumented binary, since original binary is replaced with
instrumented version

●  pat_report is automatically run before job exits

● Performance statistics are issued to stdout

● User can use “classic” CrayPat for more in-depth
performance investigation

Performance Statistics Available

NCSA Workshop, February 2013 Cray Inc.
8

● Set of predefined experiments, enabled with the
CRAYPAT_LITE environment variable
●  Sample_profile
●  Event_profile
●  GPU

●  Job information
●  Number of MPI ranks, ranks per node, number of threads
●  Wallclock
●  High memory water mark
●  Aggregate MFLOPS (CPU only)

● Profile of top time consuming routines with load balance
● Observations
●  Instructions on how to get more information

Sample Output – LAMMPS

NCSA Workshop, February 2013 Cray Inc.
9

###!
#!
CrayPat-lite Performance Statistics #!
#!
###!
!
CrayPat/X: Version 6.1.0.10863 Revision 10863 (xf 10658) 02/13/13
15:23:08!
Number of PEs (MPI ranks): 64!
Numbers of PEs per Node: 32 PEs on each of 2 Nodes!
Numbers of Threads per PE: 1!
Number of Cores per Socket: 16!
Execution start time: Fri Feb 15 14:42:24 2013!
System name and speed: mork 2100 MHz!
!
Wall Clock Time: 122.608994 secs!
High Memory: 45.70 MBytes!
MFLOPS (aggregate): 15763.16 M/sec!

!

Sample Output (cont’d)

NCSA Workshop, February 2013 Cray Inc.
10

Table 1: Profile by Function Group and Function (top 7 functions shown)!
!
 Time% | Time | Imb. | Imb. | Calls |Group!
 | | Time | Time% | | Function!
 | | | | | PE=HIDE!
!
 100.0% | 101.961423 | -- | -- | 5315211.9 |Total!
|---!
| 92.5% | 94.267451 | -- | -- | 5272245.9 |USER!
||--!
|| 75.8% | 77.248585 | 2.356249 | 3.0% | 1001.0 |LAMMPS_NS::PairLJCut::compute!
|| 6.5% | 6.644545 | 0.105246 | 1.6% | 51.0 |LAMMPS_NS::Neighbor::half_bin_newton!
|| 4.1% | 4.131842 | 0.634032 | 13.5% | 1.0 |LAMMPS_NS::Verlet::run!
|| 3.8% | 3.841349 | 1.241434 | 24.8% | 5262868.9 |LAMMPS_NS::Pair::ev_tally!
|| 1.3% | 1.288463 | 0.181268 | 12.5% | 1000.0 |LAMMPS_NS::FixNVE::final_integrate!
||==!
| 7.0% | 7.110931 | -- | -- | 42637.0 |MPI!
||--!
|| 4.8% | 4.851309 | 3.371093 | 41.6% | 12267.0 |MPI_Send!
|| 1.5% | 1.536106 | 2.592504 | 63.8% | 12267.0 |MPI_Wait!
|===!
!

Sample Output (cont’d)

NCSA Workshop, February 2013 Cray Inc.
11

================ Observations and suggestions ========================!
!
MPI Grid Detection:!
!
There appears to be point-to-point MPI communication in a 4 X 2 X 8 grid!
 pattern. The execution time spent in MPI functions might be reduced!
 with a rank order that maximizes communication between ranks on the!
 same node. The effect of several rank orders is estimated below.!
!
 A file named MPICH_RANK_ORDER.Grid was generated along with this!
 report and contains usage instructions and the Hilbert rank order!
 from the following table.!
!
 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD!
 Order Bytes/PE Bytes/PE%!
 of Total!
 Bytes/PE!
!
 Hilbert 5.533e+10 90.66% 3!
 Fold 4.907e+10 80.42% 2!
 SMP 4.883e+10 80.02% 1!
 RoundRobin 3.740e+10 61.28% 0!

NCSA Workshop, February 2013
13

Cray Inc.

When to Move to a Hybrid Programming Model

● When code is network bound
●  Look at collective time, excluding sync time: this goes up as network

becomes a problem
●  Look at point-to-point wait times: if these go up, network may be a

problem

● When MPI starts leveling off
●  Too much memory used, even if on-node shared communication is

available
●  As the number of MPI ranks increases, more off-node communication

can result, creating a network injection issue

● When contention of shared resources increases

● When you want to exploit heterogeneous nodes

Cray performance tools and Reveal can help
14

NCSA Workshop, February 2013 Cray Inc.

Tools needed to Create Hybrid Codes

● A good Programming Environment closes the gap
between peak performance and possible performance
●  A lot more than just a compiler

● Specific tools needed for identifying the parallelism in an
application
●  Fine-grained profiling: loop level rather than routine
●  Profiling and character looping structures in a complex application
●  Scoping tools for investigating parallelisability of high-level looping

structures
●  Tools for maintaining performance-portable applications

●  Application developers want to develop a single core that can run efficiently
on multi-core nodes with or without an accelerator

15
NCSA Workshop, February 2013 Cray Inc.

WARNING!!!

● Nothing comes for free, nothing is automatic
●  Hybridization of an application is difficult
●  Efficient code requires interaction with the compiler to generate

●  High level OpenMP structures
●  Low level vectorization of major computational areas

● Performance is also dependent upon the location of the
data
●  CPU: NUMA, first-touch
●  Accelerator: resident or data-sloshing

● Software such as Cray's Hybrid Programming
Environment provides tools to help, but cannot replace
the developer's inside knowledge

16
NCSA Workshop, February 2013 Cray Inc.

Optimizations for Multi-core Systems

● Reduce number of MPI ranks per node

● Add parallelism to MPI ranks to take advantage of cores
within a node while minimizing network injection
contention

● Maximize on-node communication between MPI ranks

● Relieve on-node shared resource contention by pairing
threads or processes that perform different work (for
example computation with off-node communication) on
the same node

● Accelerate work intensive parallel loops

17
NCSA Workshop, February 2013 Cray Inc.

Approach to Adding Parallelism

1.  Identify possible accelerator kernels
●  Determine where to add additional levels of parallelism

●  Assumes MPI application is functioning correctly on X86
●  Find top serial work-intensive loops (perftools + CCE loop work estimates)

2.  Perform parallel analysis, scoping and vectorization
●  Split loop work among threads

●  Do parallel analysis and restructuring on targeted high level loops
●  Use CCE loopmark feedback, Reveal loopmark and source browsing

3.  Move to OpenMP and then to OpenACC
●  Add parallel directives and acceleration extensions

●  Insert OpenMP directives (Reveal scoping assistance)
●  Run on X86 to verify application and check for performance improvements
●  Convert desired OpenMP directives to OpenACC

4.  Analyze performance from optimizations

NCSA Workshop, February 2013 Cray Inc.
18

NCSA Workshop, February 2013
19

Cray Inc.

● Helps identify high-level serial loops to parallelize

●  Based on runtime analysis, approximates how much work exists within
a loop

●  Provides min, max and average trip counts that can be used to
approximate work and help carve up loop on GPU

Loop Work Estimates

NCSA Workshop, February 2013 Cray Inc.
20

Collecting Loop Work Estimates

NCSA Workshop, February 2013 Cray Inc.
21

●  Load PrgEnv-cray module
●  Load perftools module

● Compile AND link with –h profile_generate

●  Instrument binary for tracing
●  pat_build –w my_program

● Run application

● Create report with loop statistics
●  pat_report my_program.xf > loops_report

Example Report – Inclusive Loop Time

NCSA Workshop, February 2013 Cray Inc.

!
!
Table 2: Loop Stats by Function (from -hprofile_generate)!
!
 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]!
 Incl | Hit | Trips | Trips | Trips | PE=HIDE!
 Time | | Avg | Min | Max |!
 Total | | | | |!
|--!
| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33!
| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34!
| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49!
| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50!
| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29!
| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30!
| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29!
| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30!
| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63!
| 1.541299 | 20062500 | 12 | 0 | 12 |riemann_.LOOP.3.li.64!
| 0.863656 | 1687500 | 104 | 0 | 108 |parabola_.LOOP.6.li.67!

22

NCSA Workshop, February 2013
23

Cray Inc.

NCSA Workshop, February 2013 Cray Inc.
24

Reveal

New code analysis and restructuring assistant…

● Uses both the performance toolset and CCE’s program

library functionality to provide static and runtime analysis
information

● Key Features

●  Annotated source code with compiler optimization information
●  Feedback on critical dependencies that prevent optimizations

●  Scoping analysis
●  Identify, shared, private and ambiguous arrays

●  Allow user to privatize ambiguous arrays
●  Allow user to override dependency analysis

●  Source code navigation based on performance data collected through
CrayPat

NCSA Workshop, February 2013 Cray Inc.
25

How to Use

NCSA Workshop, February 2013 Cray Inc.
26

● Optionally create loop statistics using the Cray
performance tools to determine which loops have the
most work

● Compile your application with Cray CCE to generate a
program library
●  > ftn –h pl=vhone.pl –c file1.f90

● Run reveal
●  Compiler information only:

●  > reveal vhone.pl

●  Compiler + loop work estimates
●  > reveal vhone.pl vhone_loops.ap2

Reveal with Loop Work Estimates

NCSA Workshop, February 2013 Cray Inc.
27

Visualize Loopmark with Performance Information

NCSA Workshop, February 2013 Cray Inc.

Performance
feedback

Loopmark and optimization
annotations

Compiler feedback

28

NCSA Workshop, February 2013 Cray Inc.
29

Visualize CCE’s Loopmark with Performance
Profile (2)

Integrated
message

‘explain support’

Integrated
message

‘explain support’

View Pseudo Code for Inlined Functions

NCSA Workshop, February 2013 Cray Inc.
30

Inlined call
sites marked

Expand to
see pseudo

code

Scoping Assistance – Review Scoping Results

NCSA Workshop, February 2013 Cray Inc.

User addresses
parallelization

issues for
unresolved
variables

Loops with
scoping

information are
highlighted – red

needs user
assistance

Parallelization inhibitor
messages are provided to
assist user with analysis

31

Scoping Assistance – User Resolves Issues

NCSA Workshop, February 2013 Cray Inc.

Click on variable to
view all

occurrences in loop Use Reveal’s
OpenMP

parallelization tips

32

Scoping Assistance – Generate Directive

NCSA Workshop, February 2013 Cray Inc.

Automatically
generate
OpenMP
directive

Reveal generates
example OpenMP

directive

33

NCSA Workshop, February 2013
34

Cray Inc.

